首页 | 本学科首页   官方微博 | 高级检索  
     


p66(ShcA) and oxidative stress modulate myogenic differentiation and skeletal muscle regeneration after hind limb ischemia
Authors:Zaccagnini Germana  Martelli Fabio  Magenta Alessandra  Cencioni Chiara  Fasanaro Pasquale  Nicoletti Carmine  Biglioli Paolo  Pelicci Pier Giuseppe  Capogrossi Maurizio C
Affiliation:Laboratorio di Biologia Vascolare e Terapia Genica, Dipartimento di Chirurgia Vascolare, Centro Cardiologico Monzino--Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 20138 Milan, Italy.
Abstract:Oxidative stress plays a pivotal role in ischemic injury, and p66(ShcA)ko mice exhibit both lower oxidative stress and decreased tissue damage following hind limb ischemia. Thus, it was investigated whether tissue regeneration following acute hind limb ischemia was altered in p66(ShcA)ko mice. Upon femoral artery dissection, muscle regeneration started earlier and was completed faster than in wild-type (WT) control. Moreover, faster regeneration was associated with decreased oxidative stress. Unlike ischemia, cardiotoxin injury induced similar skeletal muscle damage in both genotypes. However, p66(ShcA)ko mice regenerated faster, in agreement with the regenerative advantage upon ischemia. Since no difference between p66(ShcA)wt and knock-out (ko) mice was found in blood perfusion recovery after ischemia, satellite cells (SCs), a resident population of myogenic progenitors, were examined. Similar SCs numbers were present in WT and ko mice. However, in vitro cultured p66(ShcA)ko SCs displayed lower oxidative stress levels and higher proliferation rate and differentiated faster than WT. Furthermore, when exposed to sublethal H(2)O(2) doses, p66(ShcA)ko SCs were resistant to H(2)O(2)-induced inhibition of differentiation. Finally, myogenic conversion induced by MyoD overexpression was more efficient in p66(ShcA)ko fibroblasts compared with WT. The present work demonstrates that oxidative stress and p66(ShcA) play a crucial role in the regenerative pathways activated by acute ischemia.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号