首页 | 本学科首页   官方微博 | 高级检索  
     


Transport of lithium and rectification by frog skin
Authors:Oscar A. Candia  Dante J. Chiarandini
Affiliation:Department of Ophthalmology, Mount Sinai School of Medicine of the City University of New York, Fifth Avenue and 100th Street, New York, N.Y 10029 U.S.A.
Abstract:The isolated frog skin, bathed with Li+-Ringer (Na+-free) on the outside and Na+-Ringer on the inside, can maintain a normal potential difference (PD) and short-circuit current (s.c.c.) for more than 6. h. The s.c.c. correspondended to the Li+ influx. The Na+ efflux was 4% of the s.c.c. 10−5 M ouabain depressed Li+ influx and s.c.c. 1010−5 M amiloride abolished the Li+ s.c.c., while 0.1 unit/ml oxytocin stimulated it. When the inside of the skin was bathed with Li+-Ringer, PD and s.c.c. fell to zero within 2 h. The oxygen consumption of skin slices bathed in Li+-Ringer was 29% lower than controls bathed in Na+-Ringer.When the isolated frog skin is bathed in Na2SO4-Ringer it shows electrical rectification which has been correlated with the active transport of Na+. In skins transporting Li+, rectification characteristics are similar to those of skins transporting Na+. When the inner face of the skin is bathed with Li+-Ringer, rectification, PD and s.c.c. decline in a parallel fashion.It is concluded that: (1) Li+ can be transported when Na+ is present at the inner face. (2) Amiloride, ouabain and oxytocin affect Li+ and Na+ transport in a similar manner. (3) Li+ transport, like Na+ transport, is associated with rectification. (4) Active transport of Na+ and Li+ seems to depend on two different but associated proceses; one taking place at the external barrier (where rectification occurs) as shown by the effect of amiloride; and the other of an inner site related to energy requirements and affected by ouabain and Li+. (5) The cation being transported is not necessarily activating the (Na+-K+-ATPase.
Keywords:PD  potential difference  s.c.c.  short-circuit current
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号