Differential Support of Aspergillus fumigatus Morphogenesis by Yeast and Human Actins |
| |
Authors: | Lawrence L. LeClaire Jarrod R. Fortwendel |
| |
Affiliation: | 1. Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America.; 2. Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America.; Geisel School of Medicine at Dartmouth, UNITED STATES, |
| |
Abstract: | The actin cytoskeleton is highly conserved among eukaryotes and is essential for cellular processes regulating growth and differentiation. In fungi, filamentous actin (F-actin) orchestrates hyphal tip structure and extension via organization of exocytic and endocytic processes at the hyphal tip. Although highly conserved, there are key differences among actins of fungal species as well as between mammalian and fungal actins. For example, the F-actin stabilizing molecules, phalloidin and jasplakinolide, bind to actin structures in yeast and human cells, whereas phalloidin does not bind actin structures of Aspergillus. These discrepancies suggest structural differences between Aspergillus actin filaments and those of human and yeast cells. Additionally, fungal actin kinetics are much faster than those of humans, displaying 5-fold faster nucleation and 40-fold faster nucleotide exchange rates. Limited published studies suggest that these faster actin kinetics are required for normal growth and morphogenesis of yeast cells. In the current work, we show that replacement of Aspergillus actin with yeast actin generates a morphologically normal strain, suggesting that Aspergillus actin kinetics are similar to those of yeast. In contrast to wild type A. fumigatus, F-actin in this strain binds phalloidin, and pharmacological stabilization of these actin structures with jasplakinolide inhibits germination and alters morphogenesis in a dose-dependent manner. We also show that human β-actin cannot support Aspergillus viability, even though the amino acid sequences of human and Aspergillus actins are 89.3% identical. Our findings show that minor differences in actin protein sequence account for loss of phalloidin and jasplakinolide sensitivity in Aspergillus species. |
| |
Keywords: | |
|
|