首页 | 本学科首页   官方微博 | 高级检索  
     


Performance of a genetic algorithm for mass spectrometry proteomics
Authors:Neal?O?Jeffries  author-information"  >  author-information__contact u-icon-before"  >  mailto:neal.jeffries@nih.gov"   title="  neal.jeffries@nih.gov"   itemprop="  email"   data-track="  click"   data-track-action="  Email author"   data-track-label="  "  >Email author
Affiliation:(1) Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
Abstract:

Background  

Recently, mass spectrometry data have been mined using a genetic algorithm to produce discriminatory models that distinguish healthy individuals from those with cancer. This algorithm is the basis for claims of 100% sensitivity and specificity in two related publicly available datasets. To date, no detailed attempts have been made to explore the properties of this genetic algorithm within proteomic applications. Here the algorithm's performance on these datasets is evaluated relative to other methods.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号