首页 | 本学科首页   官方微博 | 高级检索  
     


Cell Proliferation,Movement and Differentiation during Maintenance of the Adult Mouse Adrenal Cortex
Authors:Su-Ping Chang  Hamish D. Morrison  Frida Nilsson  Christopher J. Kenyon  John D. West  Steven D. Morley
Affiliation:1. Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom.; 2. Division of Health Sciences, University of Edinburgh, Edinburgh, United Kingdom.; 3. Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.; University of Warwick – Medical School, United Kingdom,
Abstract:Appropriate maintenance and regeneration of adult endocrine organs is important in both normal physiology and disease. We investigated cell proliferation, movement and differentiation in the adult mouse adrenal cortex, using different 5-bromo-2''-deoxyuridine (BrdU) labelling regimens and immunostaining for phenotypic steroidogenic cell markers. Pulse-labelling showed that cell division was largely confined to the outer cortex, with most cells moving inwards towards the medulla at around 13-20 µm per day, though a distinct labelled cell population remained in the outer 10% of the cortex. Pulse-chase-labelling coupled with phenotypic immunostaining showed that, unlike cells in the inner cortex, most BrdU-positive outer cortical cells did not express steroidogenic markers, while co-staining for BrdU and Ki67 revealed that some outer cortical BrdU-positive cells were induced to proliferate following acute adrenocorticotropic hormone (ACTH) treatment. Extended pulse-chase-labelling identified cells in the outer cortex which retained BrdU label for up to 18-23 weeks. Together, these observations are consistent with the location of both slow-cycling stem/progenitor and transiently amplifying cell populations in the outer cortex. Understanding the relationships between these distinct adrenocortical cell populations will be crucial to clarify mechanisms underpinning adrenocortical maintenance and long-term adaptation to pathophysiological states.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号