首页 | 本学科首页   官方微博 | 高级检索  
     


Gas exchange and chlorophyll a fluorescence measurements as proxies of X-ray resistance in Phaseolus vulgaris L.
Authors:Guadagno  C. R.  Pugliese  M.  Bonanno  S.  Manco  A. M.  Sodano  N.  D’Ambrosio  N.
Affiliation:1.Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4-Edificio 7, 80126, Naples, Italy
;2.Dipartimento di Fisica “Ettore Pancini”, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4-Edificio 6, 80126, Naples, Italy
;3.Department of Botany, University of Wyoming, 1000 University Avenue, Laramie, WY, USA
;
Abstract:

Phaseolus vulgaris L. plants were irradiated with different doses (0.3, 10, 50 and 100 Gy) of X-rays in order to obtain a reference curve of response to ionizing radiations for this species. Growth analysis, gas exchange and chlorophyll a fluorescence measurements were performed to estimate the radio-resistance of bean plants. Specifically, there was a negative influence of X-rays on the net photosynthesis rate at 50 and 100 Gy, already on the day of irradiation. Experimental data showed a recovery over time in the gas exchange while the theoretical maximum photochemical efficiency of the photosystem II (Fv/Fm) was fairly constant throughout the period of measurements (20 days) and for all the experimental conditions. On the other hand, the quantum yield of PSII linear electron transport (ΦPSII) and non-photochemical quenching (NPQ) were deeply influenced over time by X-ray dose, suggesting a decrease in the functionality of the photosynthetic apparatus at the highest radiation doses. The growth was affected only at the highest doses of radiation with a significant and severe reduction of leaf expansion and number of leaves per plant. Despite the arrest in growth, X-ray exposure seems to trigger an increased photochemical activity probably signifying that P. vulgaris plants have a fairly elevated resistance to this kind of ionizing radiation. Our current results will provide a complete analysis of the photosystem II (PSII) response of P. vulgaris to different doses (0.3, 10, 50 and 100 Gy) of X-rays, providing sound references for both space-oriented and radioecology questions.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号