首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Dosimetric assessment of the exposure of radiotherapy patients due to cone-beam CT procedures
Authors:Baptista  Mariana  Di Maria  Salvatore  Vieira  Sandra  Santos  Joana  Pereira  Joana  Pereira  Miguel  Vaz  Pedro
Institution:1.Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10, km 139,7, 2695-066, Bobadela LRS, Portugal
;2.Fundação Champalimaud, Centro Clínico Champalimaud, Avenida de Brasília, 1400-038, Lisbon, Portugal
;3.Instituto Politécnico de Coimbra, ESTESC, DIMR, Rua 5 de Outubro, 3046-854, Coimbra, Portugal
;4.Laboratório de Protecção e Segurança Radiológica, Instituto Superior Técnico, Campus Tecnológico e Nuclear, Estrada Nacional 10, km 139,7, 2695-066, Bobadela LRS, Portugal
;
Abstract:

Cone-beam computed tomography (CBCT) is widely used for pre-treatment verification and patient setup in image-guided radiation therapy (IGRT). CBCT imaging is employed daily and several times per patient, resulting in potentially high cumulative imaging doses to healthy tissues that surround exposed target organs. Computed tomography dose index (CTDI) is the parameter used by CBCT equipment as indication of the radiation output to patients. This study aimed to increase the knowledge on the relation between CBCT organ doses and weighted CTDI (CTDIW) for a thorax scanning protocol. A CBCT system was modelled using the Monte Carlo (MC) radiation transport program MCNPX2.7.0. Simulation results were validated against half-value layer (HVL), axial beam profile, patient skin dose (PSD) and CTDI measurements. For organ dose calculations, a male voxel phantom (“Golem”) was implemented with the CBCT scanner computational model. After a successful MC model validation with measurements, a systematic comparison was performed between organ doses (and their distribution) and CTDI dosimetry concepts CTDIW and cumulative dose quantities f100(150) and \({\text{CTD}}{{\text{I}}_\infty }\)]. The results obtained show that CBCT organ doses vary between 1.2?±?0.1 mGy and 3.3?±?0.2 mGy for organs located within the primary beam. It was also verified that CTDIW allows prediction of absorbed doses to tissues at distances of about 5 cm from the isocentre of the CBCT system, whereas f100(150) allows prediction of organ doses at distances of about 10 cm from the isocentre, independently from its location. This study demonstrates that these dosimetric concepts are suitable methods that easily allow a good approximation of the additional CBCT imaging doses during a typical lung cancer IGRT treatment.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号