首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Extracellular vesicles from thyroid cancer harbor a functional machinery involved in extracellular matrix remodeling
Institution:1. Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Bioquímica Clínica, Córdoba, Argentina;2. Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Ciudad Universitaria, Haya de la Torre y Medina Allende, Córdoba X5000HUA, Argentina;3. Centro de Investigación en Medicina Traslacional Severo Amuchástegui, Instituto Universitario de Ciencias Biomédicas de Córdoba, Naciones Unidas 420, Parque Velez Sarsfield, Córdoba, Argentina;4. Exosomes Laboratory, CIC bioGUNE-BRTA, CIBERehd, Bizkaia Technology Park, Derio 48160, Spain;5. Proteomics Unit, CICbioGUNE-BRTA, CIBERehd, ProteoRed, Bizkaia Technology Park, Derio 48160, Bizkaia, Spain;6. IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
Abstract:Extracellular vesicles (EVs) participate in cell-stroma crosstalk within the tumor microenvironment and fibroblasts (Fb) contribute to tumor promotion in thyroid cancer. However, the role of tumor-stroma derived EVs still needs to be deciphered. We hypothesized that the interaction of thyroid tumor cells with Fb would liberate EVs with a specific proteomic profile, which would have an impact on EV-functionality in thyroid tumor progression-related events. Tumor (TPC-1, 8505c) and non-tumor (NThyOri) thyroid cells were co-cultured with human Fb. EVs, obtained by ultracentrifugation of conditioned media, were characterized by nanoparticle tracking analysis and western blotting. EV-proteomic analysis was performed by mass-spectrometry, and metalloproteinases (MMPs) were studied by zymography. EV-exchange was evaluated using immunofluorescence, confocal microscopy and FACS. EVs expressed classical exosome markers, with EVs from thyroid tumor cell-Fb co-cultures showing a proteomic profile related to extracellular matrix (ECM) remodeling. Bidirectional crosstalk between Fb and TPC-1 cells produced significantly more EVs than their isolated cells, and potentiated EV-functionality. In line with this, Fb-TPC-1 derived EVs induced MMP2 activation in NThyOri supernatants, and MMP2 activity could be evidenced in Fb and TPC-1 contact-independent co-cultures. Besides, MMP2 interactors allowed us to discriminate between EVs from thyroid tumoral and non-tumoral milieus. Interestingly, Fb internalized more EVs from TPC-1 than from NThyOri producing cells. Fb and thyroid tumor cell crosstalk produces specialized EVs with an ECM remodeling proteomic profile, enabling activation of MMP2 and possibly facilitating ECM-degradation, which is potentially linked with thyroid tumor progression.
Keywords:Extracellular vesicles  Thyroid cancer  Fibroblasts  Proteomics  MMP2  Co-cultures
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号