首页 | 本学科首页   官方微博 | 高级检索  
     


DNA conformation and dynamics
Authors:Alex Ninaber  J. M. Goodfellow
Affiliation:(1) Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, UK e-mail: j.goodfellow@mail.cryst.bbk.ac.uk Tel.: 0171-631-6833 Fax: 0171-631-6803 and BBSRC Centre for Structural Biology, GB
Abstract:Nucleotide conformation and dynamics are important for the study of radiation damage to DNA at the atomic level. It is necessary to study not only normal oligonucleotide structure but also those containing modified bases which result from interaction with OH-radicals. There are now over 8000 atomic coordinate entries in the Brookhaven Protein Data Bank, of which over 900 relate to experimentally determined structures of nucleic acids and nucleic acid/protein complexes. We review some of these data which have led to the elucidation of novel DNA conformations, insight into DNA sequence specificity and knowledge of protein/DNA interactions. Further understanding of the conformation, stability and dynamics of nucleic acids has come from molecular modelling. We have used such techniques to study chemical modifications to bases such as alkylation of thymine and guanine and the effects of curvature in longer sequences. Recent improvements in this area include the inclusions of explicit counter-ions and solvent molecules, the use of Particle Mesh Ewald methods to incorporate the long-range electrostatic interactions and the use of longer time scale simulations. We have employed these methods to analyse the effects of incorporation of 8-oxodeoxyguanosine into duplex DNA. This lesion is a common result of radiation damage and is known to have important effects in mutagenesis, cancer and ageing. Received: 7 October 1998 / Accepted in revised form: 18 January 1999
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号