首页 | 本学科首页   官方微博 | 高级检索  
     


Cell-to-cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor
Authors:Friedrich Kragler,Jan Monzer,Khalid Shash,Beatriz Xoconostle-Cá  zares, William J. Lucas
Affiliation:Section of Plant Biology, Division of Biological Sciences, University of California, Davis, CA 95616, USA
Abstract:Plasmodesmata and the nuclear pore complex (NPC) mediate the selective trafficking of proteins and protein-nucleic acid complexes. The events underlying the translocation of endogenous and viral proteins through plasmodesmata were investigated to further explore the parallels between these cell-to-cell and intracellular communication systems. Studies performed with crosslinked KNOTTED1 (KN1) revealed that a conformational change is required for the cell-to-cell movement of this protein. Microinjection of gold-conjugated KN1 established that, as with the NPC, a combination of protein unfolding and microchannel dilation appears to be involved in protein translocation. However, during this process the extent of microchannel dilation is much less than observed for the NPC, which may reflect a physical limitation imposed by the cell wall. Co-injection of KN1-gold with unbound KN1 or cucumber mosaic virus movement protein (CMV-MP) established that the KN1-gold probe is highly effective at blocking plasmodesmal transport of KN1 and CMV-MP. This result provided the foundation for competition experiments which demonstrated that KN1 and the viral movement proteins of CMV and tobacco mosaic virus likely utilize a common receptor in the pathway for cell-to-cell transport of proteins. A combination of biochemical fractionation methods, an in vitro binding assay founded on the high affinity between KN1-gold and the putative common plasmodesmal receptor, and microinjection techniques were used to isolate plasmodesmal constituents involved in cell-to-cell transport. A model describing the steps involved in protein transport through plasmodesmata is presented.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号