首页 | 本学科首页   官方微博 | 高级检索  
     


Fluid Dynamics Simulating Experiment of Pressure Gradient for Assimilate Translocation in Sieve Tubes
Authors:Yong Hua-nian
Abstract:According to the similitude theory of fluid mechanics, a pressure-driven experiment in a sieve tube model has been performed. The relationships between the pressure gradient and the transport velocities at the various diameters of sieve pore have been obtained. The experimental data were compared with the theoretical prediction based on the poiseuille equation. The result shows that the pressure gradient required for translating the assimilate is directly proportional to the translating velocity, which agrees with Poiseuille equation. However, the resistance of the sieve plate to flow is much more than that estimated by the previous theory. Even though the translating velocity is a normal level and the diameter of the sieve tube is a typical size, the pressure gradient required for flow is about 1 bar/m. It will increase sharply with the decrease of the diameter of sieve pore. The ratios of the pressure gradients measured in the test to that predicted by Poiseuille equation are about 2–4 for the five kinds of diameters of Sieve pore. Additionally, a simulating test of the pores being partly plugged has been performed. The result shows that the pressure gradients measured are greatly beyond the range that may be kept in plants. This study will be helpful to assess Munch hypothesis.
Keywords:Pressure gradient in sieve   Assimilate translocation   Munch hypothesis  
点击此处可从《植物学报(英文版)》浏览原始摘要信息
点击此处可从《植物学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号