首页 | 本学科首页   官方微博 | 高级检索  
     


Explainable machine learning framework to predict personalized physiological aging
Authors:David Bernard  Emmanuel Doumard  Isabelle Ader  Philippe Kemoun  Jean-Christophe Pagès  Anne Galinier  Sylvain Cussat-Blanc  Felix Furger  Luigi Ferrucci  Julien Aligon  Cyrille Delpierre  Luc Pénicaud  Paul Monsarrat  Louis Casteilla
Affiliation:1. RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, France

Université Toulouse 1 – Capitole, Institute of Research in Informatics (IRIT) of Toulouse, CNRS, Toulouse, France;2. RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, France;3. RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, France

Oral Medicine Department and Hospital of Toulouse, Toulouse Institute of Oral Medicine and Science, CHU de Toulouse, Toulouse, France;4. RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, France

UFR Santé, Département Médecine, Institut Fédératif de Biologie, CHU de Toulouse, Toulouse, France;5. Université Toulouse 1 – Capitole, Institute of Research in Informatics (IRIT) of Toulouse, CNRS, Toulouse, France

Artificial and Natural Intelligence Toulouse Institute ANITI, Toulouse, France;6. Biomedical Research Centre, National Institute on Aging, NIH, Baltimore, Maryland, USA;7. Université Toulouse 1 – Capitole, Institute of Research in Informatics (IRIT) of Toulouse, CNRS, Toulouse, France;8. CERPOP, UMR1295 (Equity), Université P. Sabatier, Toulouse, France

Abstract:Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter-parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty-six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age-specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow-up. These data show that PPA is a robust, quantitative and explainable ML-based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.
Keywords:artificial intelligence  biological age  Explainability  healthy aging  machine learning  personalized medicine  physiological age  Rejuvenative therapy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号