首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling multi-sensory feedback control of zebrafish in a flow
Authors:Daniel A. Burbano-L.  Maurizio Porfiri
Affiliation:1. Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York City, New York, USA ; 2. Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York City, New York, USA ; 3. Center for Urban Sciences and Progress, Tandon School of Engineering, New York University, New York City, New York, USA ; University of Pittsburgh, UNITED STATES
Abstract:Understanding how animals navigate complex environments is a fundamental challenge in biology and a source of inspiration for the design of autonomous systems in engineering. Animal orientation and navigation is a complex process that integrates multiple senses, whose function and contribution are yet to be fully clarified. Here, we propose a data-driven mathematical model of adult zebrafish engaging in counter-flow swimming, an innate behavior known as rheotaxis. Zebrafish locomotion in a two-dimensional fluid flow is described within the finite-dipole model, which consists of a pair of vortices separated by a constant distance. The strength of these vortices is adjusted in real time by the fish to afford orientation and navigation control, in response to of the multi-sensory input from vision, lateral line, and touch. Model parameters for the resulting stochastic differential equations are calibrated through a series of experiments, in which zebrafish swam in a water channel under different illumination conditions. The accuracy of the model is validated through the study of a series of measures of rheotactic behavior, contrasting results of real and in-silico experiments. Our results point at a critical role of hydromechanical feedback during rheotaxis, in the form of a gradient-following strategy.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号