首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Involvement of the mitogen-activated protein kinase pathway in soft-shelled turtle iridovirus-induced apoptosis
Authors:Youhua Huang  Xiaohong Huang  Jia Cai  Fuzhou Ye  Qiwei Qin
Institution:(1) Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China;(2) State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 West Xingang Road, Guangzhou, 510275, China;
Abstract:Iridoviruses are large DNA viruses that infect invertebrates and poikilothermic vertebrates, and result in significant economic losses in aquaculture production, and drastic declines in amphibian populations. Soft-shelled turtle iridovirus (STIV) is the causative agent of severe systemic diseases in farm-raised soft-shelled turtles (Trionyx sinensis). In the present study, the mechanisms of STIV-induced cell death and the roles of the mitogen-activated protein kinase (MAPK) signaling pathway were investigated. STIV infection evoked typical apoptosis in fish cells, as demonstrated by the formation of apoptotic bodies, positive terminal deoxynucleotidyl transferase-mediated nicked-end labeling, and caspase-3 activation. The translocation of cytochrome c from mitochondria to cytoplasm, and caspase-9 activation suggested that a mitochondria-mediated pathway was involved in STIV-induced apoptosis. Moreover, MAPK pathways, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK signaling were activated during STIV infection. Using specific inhibitors, we found that MAPK signaling molecules, including ERK, JNK and p38 MAPK, were important for virus release, whereas, only ERK and p38 MAPK were involved in STIV-induced apoptosis by modulating caspase-3 activity. Taken together, our findings shed light on the roles of the MAPK signaling pathway in iridovirus-induced apoptosis and virus replication, which provides new insights into understanding iridovirus–host interaction.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号