首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling the Current-Voltage Characteristics of Chara Membranes: I. The Effect of ATP Removal and Zero Turgor
Authors:M.J. Beilby  N.A. Walker
Affiliation:(1) School of Physics, Biophysics, University of NSW, Kensington 2052, NSW, Australia, AU
Abstract:We have obtained and modeled the electrical characteristics of the plasma membrane of Chara internodal cells: intact, without turgor and perfused with and without ATP. The cells were voltage and space-clamped to obtain the I/V (current-voltage) and G/V (conductance-voltage) profiles of the cell membrane. The intact cells yielded similar I/V characteristics with resting p.d.s of −221 ± 12 mV (cytoplasmic clamp, 5 cells) and −217 ± 12 mV (vacuolar clamp, 5 cells). The cut unperfused cells were depolarized at −169 ± 12 mV (7 cells) compared to the vacuole-clamped intact cells. The cells perfused with ATP fell into three groups: hyperpolarized group with resting p.d. −175 ± 12 mV (4 cells) and I/V profile similar to the intact and cut unperfused cells; depolarized group with resting p.d. of −107 ± 12 mV (6 cells) and I/V profiles close to linear; and excited cells with profiles showing a negative conductance region and resting p.d. at −59 ± 12 mV (5 cells). The cells perfused with medium containing no ATP showed upwardly concave I/V characteristics and resting p.d. at −81 ± 12 mV (6 cells). The I/V curves were modeled employing the ``Two-state' model for the H+ pump (Hansen et al., 1981). The inward and outward rectifiers were fitted to exponential functions and combined with a linear background current. The excitation state in perfused cells was modeled by including an inward current, i excit, with p.d.-dependence described by a combination of hyperbolic tangent functions. An inward current, i no-ATP, with a smaller amplitude, but very similar p.d.-dependence was also included in the simulation of the I/V curves from cells without ATP. This approach avoided I/V curve subtraction. The modeling of the total I/V and G/V characteristics provided more information about the parameters of the ``Two-state' pump model, as well as more quantitative understanding of the interaction of the major transport systems in the plasmalemma in generation of the resting potential under a range of circumstances. ATP had little effect on nonpump currents except the excitation current; depolarization profoundly affected the pump characteristics. Received: 23 January/Revised: 10 October 1995
Keywords:: Pump modeling —   Effect of ATP —  Chara—   Current-voltage profiles —   Excitation —   Perfusion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号