Polyglutamine Genes Interact to Modulate the Severity and Progression of Neurodegeneration in Drosophila |
| |
Authors: | Derek Lessing Derek Lessing |
| |
Affiliation: | Department of Biology, University of Pennsylvania, Howard Hughes Medical Institute, Philadelphia, Pennsylvania, United States of America;Baylor College of Medicine, United States of America |
| |
Abstract: | The expansion of polyglutamine tracts in a variety of proteins causes devastating, dominantly inherited neurodegenerative diseases, including six forms of spinal cerebellar ataxia (SCA). Although a polyglutamine expansion encoded in a single allele of each of the responsible genes is sufficient for the onset of each disease, clinical observations suggest that interactions between these genes may affect disease progression. In a screen for modifiers of neurodegeneration due to SCA3 in Drosophila, we isolated atx2, the fly ortholog of the human gene that causes a related ataxia, SCA2. We show that the normal activity of Ataxin-2 (Atx2) is critical for SCA3 degeneration and that Atx2 activity hastens the onset of nuclear inclusions associated with SCA3. These activities depend on a conserved protein interaction domain of Atx2, the PAM2 motif, which mediates binding of cytoplasmic poly(A)-binding protein (PABP). We show here that PABP also influences SCA3-associated neurodegeneration. These studies indicate that the toxicity of one polyglutamine disease protein can be dramatically modulated by the normal activity of another. We propose that functional links between these genes are critical to disease severity and progression, such that therapeutics for one disease may be applicable to others. |
| |
Keywords: | |
|
| 点击此处可从《PLoS biology》浏览原始摘要信息 |
|
点击此处可从《PLoS biology》下载全文 |
|