首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Differential impact of mitochondrial positioning on mitochondrial Ca(2+) uptake and Ca(2+) spark suppression in skeletal muscle
Authors:Rossi Ann E  Boncompagni Simona  Wei Lan  Protasi Feliciano  Dirksen Robert T
Institution:Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA.
Abstract:Muscle contraction requires ATP and Ca(2+) and, thus, is under direct control of mitochondria and the sarcoplasmic reticulum. During postnatal skeletal muscle maturation, the mitochondrial network exhibits a shift from a longitudinal ("longitudinal mitochondria") to a mostly transversal orientation as a result of a progressive increase in mitochondrial association with Ca(2+) release units (CRUs) or triads ("triadic mitochondria"). To determine the physiological implications of this shift in mitochondrial disposition, we used confocal microscopy to monitor activity-dependent changes in myoplasmic (fluo 4) and mitochondrial (rhod 2) Ca(2+) in single flexor digitorum brevis (FDB) fibers from 1- to 4-mo-old mice. A robust and sustained Ca(2+) accumulation in triadic mitochondria was triggered by repetitive tetanic stimulation (500 ms, 100 Hz, every 2.5 s) in FDB fibers from 4-mo-old mice. Specifically, mitochondrial rhod 2 fluorescence increased 272 ± 39% after a single tetanus and 412 ± 45% after five tetani and decayed slowly over 10 min following the final tetanus. Similar results were observed in fibers expressing mitochondrial pericam, a mitochondrial-targeted ratiometric Ca(2+) indicator. Interestingly, sustained mitochondrial Ca(2+) uptake following repetitive tetanic stimulation was similar for triadic and longitudinal mitochondria in FDB fibers from 1-mo-old mice, and both mitochondrial populations were found by electron microscopy to be continuous and structurally tethered to the sarcoplasmic reticulum. Conversely, the frequency of osmotic shock-induced Ca(2+) sparks per CRU density decreased threefold (from 3.6 ± 0.2 to 1.2 ± 0.1 events·CRU(-1)·min(-1)·100 μm(-2)) during postnatal development in direct linear correspondence (r(2) = 0.95) to an increase in mitochondrion-CRU pairing. Together, these results indicate that mitochondrion-CRU association promotes Ca(2+) spark suppression but does not significantly impact mitochondrial Ca(2+) uptake.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号