Plant water relations and the effects of elevated CO2: a review and suggestions for future research |
| |
Authors: | Tyree Melvin T. Alexander John D. |
| |
Affiliation: | (1) Northeastern Forest Experiment Station, U.S. Forest Service, P.O. Box 968, 05402 Burlington, VT, USA;(2) Department of Botany, University of Vermont, 05405 Burlington, VT, USA |
| |
Abstract: | Increased ambient carbon dioxide (CO2) has been found to ameliorate water stress in the majority of species studied. The results of many studies indicate that lower evaporative flux density is associated with high CO2-induced stomatal closure. As a result of decreases in evaporative flux density and increases in net photosynthesis, also found to occur in high CO2 environments, plants have often been shown to maintain higher water use efficiencies when grown at high CO2 than when grown in normal, ambient air. Plants grown at high CO2 have also been found to maintain higher total water potentials, to increase biomass production, have larger root-to-shoot ratios, and to be generally more drought resistant (through avoidance mechanisms) than those grown at ambient CO2 levels. High CO2-induced changes in plant structure (i.e., vessel or tracheid anatomy, leaf specific conductivity) may be associated with changes in vulnerability to xylem cavitation or in environmental conditions in which runaway embolism is likely to occur. Further study is needed to resolve these important issues. Methodology and other CO2 effects on plant water relations are discussed.Abbreviations A net photosynthesis - Ca ambient [CO2] - Ci internal [CO2] - E evaporative flux density - g1 leaf conductance - gs stomatal conductance - LSC leaf specific conductivity - IRGA infrared gas analyzer - LAI leaf area index - PAR photosynthetically active radiation - total plant water potential - soil soil water potential - s solute potential - pt turgor pressure potential - px xylem pressure potential - RH relative humidity - R : S root to shoot ratio - RWC relative water content - SLA specific leaf area - SLW specific leaf weight - SPAC soil-plant-atmosphere-continuum - SWC soil water content - VPD vapor pressure deficit - WUE water use efficiency |
| |
Keywords: | Carbon dioxide Water relations Water use efficiency Water potential Transpiration Stomatal movement Growth |
本文献已被 SpringerLink 等数据库收录! |
|