首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The root-specific glutamate decarboxylase (GAD1) is essential for sustaining GABA levels in <Emphasis Type="Italic">Arabidopsis</Emphasis>
Authors:Nicolas Bouché  Aaron Fait  Moriyah Zik  Hillel Fromm
Institution:(1) Commissariat à l'Energie Atomique, Direction des Sciences du Vivant, Service de Bioénergétique, Gif-sur-Yvette, France, University of Leeds, School of Biology, Leeds, UK;(2) Department of Plant Sciences, The Weizmann Institute of Science, Israel;(3) School of Biology, University of Leeds, Leeds, UK;(4) Department of Plant Sciences, Tel Aviv University, Tel Aviv, Israel
Abstract:In plants, as in most eukaryotes, glutamate decarboxylase catalyses the synthesis of GABA. The Arabidopsis genome contains five glutamate decarboxylase genes and one of these genes (glutamate decarboxylase1; i.e.GAD1) is expressed specifically in roots. By isolating and analyzing three gad1 T-DNA insertion alleles, derived from two ecotypes, we investigated the potential role of GAD1 in GABA production. We also analyzed a promoter region of the GAD1 gene and show that it confers root-specific expression when fused to reporter genes. Phenotypic analysis of the gad1 insertion mutants revealed that GABA levels in roots were drastically reduced compared with those in the wild type. The roots of the wild type contained about sevenfold more GABA than roots of the mutants. Disruption of the GAD1 gene also prevented the accumulation of GABA in roots in response to heat stress. Our results show that the root-specific calcium/calmodulin-regulated GAD1 plays a major role in GABA synthesis in plants under normal growth conditions and in response to stress.
Keywords:Arabidopsis  gamma-aminobtyrate" target="_blank">gif" alt="gamma" align="MIDDLE" BORDER="0">-aminobtyrate  glutamate decarboxylase  heat stress  roots  T-DNA insertion mutant
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号