首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Gas and Liquids in Intercellular Spaces of Maize Roots
Authors:MICHAEL  W; CHOLODOVA  V P; EHWALD  R
Institution:Humboldt -Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Institut für Biologie, Invalidentstr. 42, D-10115, Berlin, Germany Timiryasev-Institute of Plant Physiology, Russian Academy of Sciences, 127 276, Moscow, Botanicheskaya Ulica 35, Russian Federation
Abstract:Oils are spontaneously absorbed by gas-filled intercellularspaces (IS) in maize root cortex. The network of these spacesin living root sections was imaged by confocal laser scanningmicroscopy using a fluorescent solution of Nile red in oil.The gas volume fraction (GVF) of root segments was quantifiedby the increase in weight (differentiated zones) or tissue density(2–3 mm root tips) due to complete vacuum infiltration.Cooling to 6 °C or inhibition of oxidative phosphorylationdiminished the GVF of root tips but did not significantly affectthe GVF of differentiated root zones. The threshold pressuredifference for measurable infiltration of isolated root segmentsis lower (10 to 15  kPa) than the threshold for infiltrationof comparable zones of attached roots or of detached roots withthe cut surface sealed (>60 kPa). In the absence of an opencut, pressure-driven infiltration of the root cortex is acceleratedby microscopic fissures within the epidermal/hypodermal barrier.The GVF of the root cortex was reduced after transferring rootsfrom sugar solutions (0.1 to 0.3M ) to water. This points toefficient water transport from the medium to sugar-containingcortical cell walls through epidermal and hypodermal protoplasts.When 2-cm-long primary roots were vacuum infiltrated in situand then allowed to grow on aerated mineral medium for a further5 d, cortical IS of the originally infiltrated root bases remainedfilled with liquid but the subsequently grown apical root zoneshad a normal GVF. Copyright 1999 Annals of Botany Company Apoplastic and protoplasmic route, maize, infiltration, intercellular spaces, oil absorption, confocal laser scanning microscope, water transport, Zea mays L.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号