首页 | 本学科首页   官方微博 | 高级检索  
     


Spreading speeds of spatially periodic integro-difference models for populations with nonmonotone recruitment functions
Authors:Hans F. Weinberger  Kohkichi Kawasaki  Nanako Shigesada
Affiliation:School of Mathematics, University of Minnesota, 206 Church Street S.E., Minneapolis, MN 55455, USA. hfw@math.umn.edu
Abstract:An idea used by Thieme (J. Math. Biol. 8, 173-187, 1979) is extended to show that a class of integro-difference models for a periodically varying habitat has a spreading speed and a formula for it, even when the recruitment function R(u, x) is not nondecreasing in u, so that overcompensation occurs. Numerical simulations illustrate the behavior of solutions of the recursion whose initial values vanish outside a bounded set.
Keywords:  KeywordHeading"  >Mathematics Subject Classification (2000) 92D40  92D25  35K55  35K57
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号