Transient relative motion of two cells in a channel flow |
| |
Authors: | R Skalak M Sugihara-Seki |
| |
Affiliation: | Bioengineering Institute, Columbia University, New York, NY 10027. |
| |
Abstract: | The hydrodynamic interaction of a red blood cell and a white blood cell in microvessels is studied, by use of a two-dimensional numerical model. The red blood cell, modeled as a small rigid circular cylinder, and the white blood cell, modeled as a larger rigid circular cylinder, are immersed in an incompressible Newtonian fluid in a two-dimensional channel. It is assumed that no external force or moment acts on the model cells, and the effect of inertia forces on the motion of the fluid and the cells is neglected. The velocity field of the suspending fluid and the instantaneous velocities of the two model cells are computed by the finite element method. Using the translational velocities of the model cells obtained, the trajectories of their relative motion are determined, for various initial positions. It is shown that the cells may or may not pass each other or separate, depending on the initial positions. The present results compare well to the experimental results. |
| |
Keywords: | |
|
|