首页 | 本学科首页   官方微博 | 高级检索  
     


Structural basis of carbohydrate recognition by calreticulin
Authors:Kozlov Guennadi  Pocanschi Cosmin L  Rosenauer Angelika  Bastos-Aristizabal Sara  Gorelik Alexei  Williams David B  Gehring Kalle
Affiliation:Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, Québec H3G 0B1, Canada.
Abstract:The calnexin cycle is a process by which glycosylated proteins are subjected to folding cycles in the endoplasmic reticulum lumen via binding to the membrane protein calnexin (CNX) or to its soluble homolog calreticulin (CRT). CNX and CRT specifically recognize monoglucosylated Glc1Man9GlcNAc2 glycans, but the structural determinants underlying this specificity are unknown. Here, we report a 1.95-Å crystal structure of the CRT lectin domain in complex with the tetrasaccharide α-Glc-(1→3)-α-Man-(1→2)-α-Man-(1→2)-Man. The tetrasaccharide binds to a long channel on CRT formed by a concave β-sheet. All four sugar moieties are engaged in the protein binding via an extensive network of hydrogen bonds and hydrophobic contacts. The structure explains the requirement for glucose at the nonreducing end of the carbohydrate; the oxygen O2 of glucose perfectly fits to a pocket formed by CRT side chains while forming direct hydrogen bonds with the carbonyl of Gly124 and the side chain of Lys111. The structure also explains a requirement for the Cys105–Cys137 disulfide bond in CRT/CNX for efficient carbohydrate binding. The Cys105–Cys137 disulfide bond is involved in intimate contacts with the third and fourth sugar moieties of the Glc1Man3 tetrasaccharide. Finally, the structure rationalizes previous mutagenesis of CRT and lays a structural groundwork for future studies of the role of CNX/CRT in diverse biological pathways.
Keywords:Calcium Binding Proteins   Carbohydrate Binding Protein   Chaperone Chaperonin   Endoplasmic Reticulum (ER)   Lectin   X-ray Crystallography
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号