首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nicotine regulates collagen gene expression,collagenase activity,and DNA synthesis in cultured cardiac fibroblasts
Authors:Ronald J Tomek  Stephen Rimar  Mahboubeh Eghbali-Webb
Institution:(1) Department of Anesthesiology, Yale University School of Medicine, 333 Cedar Street, P.O. Box 3333, 06510 New Haven, CT, USA
Abstract:Cardiac fibroblasts that reside in the interstitium are the cellular origin of collagen and other proteins of the extracellular matrix in the heart. We have previously shown thatin vitro gene expression, proliferation and even phenotypic features of cardiac fibroblasts are subject to regulation by biological factors such as hormones, growth factors and neurotransmitters. The influence of nicotine, the active ingredient of tobacco, on risk factors for cardiac diseases is well known.In vivo adverse effects of nicotine are as the result of its direct and indirect effects. The cellular and molecular mechanisms of direct effects of nicotine in the heart are widely unknown. The objective of this study was to investigate if nicotine has direct influence on cardiac fibroblasts. To this end, we studied the effects of nicotine on cultured cardiac fibroblasts. Northern hybridization analysis of RNA extracted from cardiac fibroblasts, enzymography of conditioned medium of cardiac fibroblasts and 3H]-thymidine incorporation into DNA of cardiac fibroblasts were used to examine the effects of nicotine on collagen gene expression, collagenase activity and DNA synthesis respectively. Treatment of cardiac fibroblasts with nicotine (10 mgrg/ml) led to a 31% (P<0.05) decrease in the abundance of mRNA for pro agr1(I) but not pro agr2(I) collagen compared with control untreated cells. Nicotine treatment of cardiac fibroblasts also led to decreased collagenase activity (62%, P<0.001) in the conditioned medium of those cells in culture. Studies with 3H]-thymidine incorporation into DNA of cardiac fibroblasts showed a nicotine-induced decrease (39%, P<0.001) in DNA synthesis in those cells. These findings suggest that cardiac fibroblasts are targets for the toxic effects of nicotine. The findings further point to the possibility that nicotine-induced alterations in cardiac fibroblasts' function and gene expression may contribute to the biological processes that ultimately lead to adverse effects of nicotine in the heart.
Keywords:fibroblasts  collagen metabolism  heart  smoking  DNA synthesis  extracellular matrix  tobacco
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号