首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Structural studies of starches with different water contents
Authors:Bogracheva T Y  Wang Y L  Wang T L  Hedley C L
Institution:John Innes Centre (JIC), Norwich Research Park, Colney, Norwich NR4 7UH, UK. tanya.bogracheva@bbsrc.ac.uk
Abstract:The proportion of double helices in starches from a series of pea rb, rug4-b, rug3-a, and lam-c mutants, and the wild type (WT) parental line], potato and maize (normal and low amylose), and wheat (normal) lines, ranged from about 30-50% on a dry weight basis. In relatively dry starch powders, only about half of the double helices were in crystalline order, this proportion being higher for A-type than for B-type starches. Using starch from WT pea as an example, it was found that increasing water content results in an increase in total crystallinity. When the water content was raised to a level similar to that in excess water, the proportion of crystallinity was close to the proportion of double helices (DH). Measuring crystallinity in starches with a high water content is difficult using traditional methods such as x-ray diffraction. A method was developed, therefore, for determining starch structural characteristics in excess water by measuring the enthalpy of gelatinization transition in quasi-equilibrium differential scanning calorimetry (DSC) experiments. It is suggested that DH% = DeltaH(sp)/DeltaH(DH) x 100%, where DeltaH(sp) and DeltaH(DH) represent the specific enthalpies of gelatinisation transition, DeltaH(sp) being measured as J/g dry starch weight and DeltaH(DH) as J/g DH, in starch. Studies on potato and maize starches in excess water and in 0.6M KCl showed, respectively, that DeltaH(DH) was 36.3 and 35.6 J/g for B-type polymorphs and 33.0 and 35.0 J/g for A-type polymorphs. For C-type starches, such as those from pea, intermediate values of DeltaH(DH), related to the proportions A-/B-polymorphs, should be used. The type of crystallinity in starch can be determined by the shift in peak temperature for thermograms in excess water and in excess 0.6M KCl. For B-polymorphs this shift was found to be approximately 2-3 degrees C and for A-polymorphs approximately 7-12 degrees C. The ratio between ordered areas with both A- and B-polymorphs can be determined from the enthalpies of disruption of each area. These enthalpies can be obtained by deconvolution of bimodal thermograms produced by C-type starches in excess 0.6M KCl. This methodical approach can be applied to all starches that give a sharp gelatinisation thermogram in excess water. Using a range of methods, including DSC, it was found that starch granules from the mutant peas are constructed in a similar way to those from the WT, with B-polymorphs in the centre and A-polymorphs at the periphery of all granules. The proportion of A/B-polymorphs, however, differed between the mutants. It was found that in addition to increasing the total crystallinity, increasing the water content within the granules also resulted in an increase in the proportion of B-polymorphs.
Keywords:crystallinity  polymorphs  double helices  pea seed mutants  A‐  B‐  and C‐type starches
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号