首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Radiation induction of delayed recombination in Schizosaccharomyces pombe
Authors:Takeda Jun  Uematsu Norio  Shiraishi Satomi  Toyoshima Megumi  Matsumoto Tomohiro  Niwa Ohtsura
Institution:Department of Radiation System Biology, Radiation Biology Center, Kyoto University, Yoshida Konoe, Kyoto, Japan.
Abstract:Ionizing radiation is known to induce delayed chromosome and gene mutations in the descendants of the irradiated tissue culture cells. Molecular mechanisms of such delayed mutations are yet to be elucidated, since high genomic complexity of mammalian cells makes it difficult to analyze. We now tested radiation induction of delayed recombination in the fission yeast Schizosaccharomyces pombe by monitoring the frequency of homologous recombination after X-irradiation. A reporter with 200 bp tandem repeats went through spontaneous recombination at a frequency of 1.0 x 10(-4), and the frequency increased dose-dependently to around 10 x 10(-4) at 500 Gy of X-irradiation. Although the repair of initial DNA damage was thought to be completed before the restart of cell division cycle, the elevation of the recombination frequency persisted for 8-10 cell generations after irradiation (delayed recombination). The delayed recombination suggests that descendants of the irradiated cells keep a memory of the initial DNA damage which upregulates recombination machinery for 8-10 generations even in the absence of DNA double-strand breaks (DSBs). Since radical scavengers were ineffective in inhibiting the delayed recombination, a memory by continuous production of DNA damaging agents such as reactive oxygen species (ROS) was excluded. Recombination was induced in trans in a reporter on chromosome III by a DNA DSB at a site on chromosome I, suggesting the untargeted nature of delayed recombination. Interestingly, Rad22 foci persisted in the X-irradiated population in parallel with the elevation of the recombination frequency. These results suggest that the epigenetic damage memory induced by DNA DSB upregulates untargeted and delayed recombination in S. pombe.
Keywords:Ionizing radiation  Delayed recombination  Untargeted recombination  DNA damage memory  Rad22  Schizosaccharomyces pombe
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号