首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Swiss 3T3 cells preferentially incorporate sn-2-arachidonoyl monoacylglycerol into sn-1-stearoyl-2-arachidonoyl phosphatidylinositol.
Authors:C M Simpson  H Itabe  C N Reynolds  W C King  J A Glomset
Institution:Howard Hughes Medical Institute, Department of Medicine, University of Washington, Seattle 98195.
Abstract:The sn-1-stearoyl-2-arachidonoyl phospholipids of animal cells appear to be formed by special mechanisms. To determine whether monoacylglycerol (MG) incorporation pathways are involved we incubated quiescent Swiss 3T3 cells with 3H]glycerol-labeled sn-2-arachidonoyl MG, then analyzed the radioactive cell lipids that accumulated. We also examined cell homogenates to identify enzyme activities that might promote the incorporation of sn-2-arachidonoyl MG into other cell lipids. The cell incubation experiments demonstrated rapid labeling of several lipids, including diacylglycerol, lysophosphatidic acid, phosphatidic acid, and phosphatidylinositol. They also demonstrated selective labeling of sn-1-stearoyl-2-arachidonoyl species of phosphatidylinositol, phosphatidylethanolamine, and phosphatidylserine. The cell homogenate experiments identified an sn-2-acyl MG acyltransferase activity, an MG kinase activity that phosphorylates sn-2-arachidonoyl MG in preference to sn-2-oleoyl MG, and a stearoyl-specific acyl transferase activity that converts sn-2-arachidonoyl lysophosphatidic acid into sn-1-stearoyl-2-arachidonoyl phosphatidic acid. The results also showed that this stearoyl transferase could act with other enzymes to convert sn-2-arachidonoyl lysophosphatidic acid into sn-1-stearoyl-2-arachidonoyl phosphatidylinositol. The combined results indicate that Swiss 3T3 cells incorporate sn-2-arachidonoyl MG into phospholipids by at least two different pathways, including one that specifically forms sn-1-stearoyl-2-arachidonoyl phosphatidylinositol.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号