首页 | 本学科首页   官方微博 | 高级检索  
     


Immobilization of neural cells in three-dimensional matrices for biosensor applications
Authors:O'Connor S M  Andreadis J D  Shaffer K M  Ma W  Pancrazio J J  Stenger D A
Affiliation:Laboratory for Biosensors and Biomaterials, Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA. smo@cbmse.nrl.navy.mil
Abstract:To overcome logistical difficulties with current designs of cell- or tissue-based biosensors which have individual cells or tissue slices immobilized on membranes or microelectrode arrays, we have proposed a system that uses three-dimensional cultures of neural cells immobilized in hydrogel matrices. In this design, immobilized cells would be maintained in a reservoir and then transferred to a detector platform when needed for analysis. The development of such a system relies upon a renewable supply of cells and the ability to culture cells for long periods of time in three-dimensions while maintaining their physiological function. To investigate the ability to culture neural cells in 3D matrices, embryonic rat cortical neurons and astrocytes were immobilized by matrix entrapment in a novel sugar poly(acrylate) hydrogel and collagen gels. The sugar poly(acrylate) hydrogel does not appear to support neural cell growth as a result of a lack of cell adherence, small pore size and, possibly, harshness of synthesis conditions. In contrast, collagen gels support the growth of cortical neurons, astrocytes, as well as neural progenitor cells. Evidence is also presented from immunocytochemistry and patch-clamp measurements which shows that neural progenitor cells proliferate in culture and can be induced to differentiate into neural cell types. Thus, they potentially represent a renewable cell source.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号