首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetics of muscle deoxygenation and microvascular PO(2) during contractions in rat: comparison of optical spectroscopy and phosphorescence-quenching techniques
Authors:Koga Shunsaku  Kano Yutaka  Barstow Thomas J  Ferreira Leonardo F  Ohmae Etsuko  Sudo Mizuki  Poole David C
Institution:Applied Physiology Laboratory, Kobe Design University, Kobe, Japan. s-koga@kobe-du.ac.jp
Abstract:The overarching presumption with near-infrared spectroscopy measurement of muscle deoxygenation is that the signal reflects predominantly the intramuscular microcirculatory compartment rather than intramyocyte myoglobin (Mb). To test this hypothesis, we compared the kinetics profile of muscle deoxygenation using visible light spectroscopy (suitable for the superficial fiber layers) with that for microvascular O(2) partial pressure (i.e., Pmv(O(2)), phosphorescence quenching) within the same muscle region (0.5~1 mm depth) during transitions from rest to electrically stimulated contractions in the gastrocnemius of male Wistar rats (n = 14). Both responses could be modeled by a time delay (TD), followed by a close-to-exponential change to the new steady level. However, the TD for the muscle deoxygenation profile was significantly longer compared with that for the phosphorescence-quenching Pmv(O(2)) 8.6 ± 1.4 and 2.7 ± 0.6 s (means ± SE) for the deoxygenation and Pmv(O(2)), respectively; P < 0.05]. The time constants (τ) of the responses were not different (8.8 ± 4.7 and 11.2 ± 1.8 s for the deoxygenation and Pmv(O(2)), respectively). These disparate (TD) responses suggest that the deoxygenation characteristics of Mb extend the TD, thereby increasing the duration (number of contractions) before the onset of muscle deoxygenation. However, this effect was insufficient to increase the mean response time. Somewhat differently, the muscle deoxygenation response measured using near-infrared spectroscopy in the deeper regions (~5 mm depth) (~50% type I Mb-rich, highly oxidative fibers) was slower (τ = 42.3 ± 6.6 s; P < 0.05) than the corresponding value for superficial muscle measured using visible light spectroscopy or Pmv(O(2)) and can be explained on the basis of known fiber-type differences in Pmv(O(2)) kinetics. These data suggest that, within the superficial and also deeper muscle regions, the τ of the deoxygenation signal may represent a useful index of local O(2) extraction kinetics during exercise transients.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号