首页 | 本学科首页   官方微博 | 高级检索  
   检索      


High-frequency ventilation-induced apnea: interaction of frequency, volume, FRC, and CO2
Authors:Davenport  P W; Dalziel  D J
Institution:Department of Physiological Sciences, University of Florida, Gainesville 32610.
Abstract:Apnea is often observed during high-frequency oscillatory ventilation (HFOV). This study on anesthetized dogs varied the oscillator frequency (f) and determined the stroke volume (SV) at which apnea occurred. Relaxation functional residual capacity (FRC) and the eupneic breathing end-tidal CO2 level were held constant. Airway pressure and CO2 were measured from a side port of the tracheostomy cannula. An arterial cannula was inserted for blood gas analysis. Diaphragm electromyogram (EMG) was recorded with bipolar electrodes. Apnea was defined as the absence of phasic diaphragm EMG activity for a minimum of 60 s. During HFOV, SV was increased at each f (5-40 Hz) until apnea occurred. The apnea inducing SV decreased as f increased. SV was minimal at 25-30 Hz. Frequencies greater than 30 Hz required increased SV to produce apnea. The f-SV curve was defined as the apneic threshold. Increased FRC resulted in a downward shift (less SV at the same f) in the apneic threshold. Elevated CO2 caused an upward shift (more SV at the same f) in the apneic threshold. These results demonstrate that the apnea elicited by HFOV is dependent on the interaction of oscillator f and SV, the FRC, and CO2.
Keywords:
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》浏览原始摘要信息
点击此处可从《Journal of applied physiology (Bethesda, Md. : 1985)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号