首页 | 本学科首页   官方微博 | 高级检索  
     


MIXED MODEL APPROACHES FOR ESTIMATING GENETIC VARIANCES AND COVARIANCES
Authors:Zhu Jun
Abstract:The limitations of methods for analysis of variance(ANOVA)in estimating genetic variances are discussed. Among the three methods(maximum likelihood ML, restricted maximum likelihood REML, and minimum norm quadratic unbiased estimation MINQUE)for mixed linear models, MINQUE method is presented with formulae for estimating variance components and covariances components and for predicting genetic effects. Several genetic models, which cannot be appropriately analyzed by ANOVA methods, are introduced in forms of mixed linear models. Genetic models with independent random effects can be analyzed by MINQUE(1)method whieh is a MINQUE method with all prior values setting 1. MINQUE(1)method can give unbiased estimation for variance components and covariance components, and linear unbiased prediction (LUP) for genetic effects. There are more complicate genetic models for plant seeds which involve correlated random effects. MINQUE(0/1)method, which is a MINQUE method with all prior covariances setting 0 and all prior variances setting 1, is suitable for estimating variance and covariance components in these models. Mixed model approaches have advantage over ANOVA methods for the capacity of analyzing unbalanced data and complicated models. Some problems about estimation and hypothesis test by MINQUE method are discussed.
Keywords:Mixed linear models   MINQUE method   yariance and covariance estimation   random   effect prediction.
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号