首页 | 本学科首页   官方微博 | 高级检索  
     


Chromatin condensation,cysteine-rich protamine,and establishment of disulphide interprotamine bonds during spermiogenesis of Eledone cirrhosa (Cephalopoda)
Authors:Gimenez-Bonafé Pepita  Ribes Enric  Sautière Pierre  Gonzalez Angel  Kasinsky Harold  Kouach Mustafa  Sautière Pierre-Eric  Ausió Juan  Chiva Manel
Affiliation:The Prostate Center, Vancouver General Hospital, BC, Canada.
Abstract:During spermiogenesis in Eledone cirrhosa a single protamine substitutes for histones in nuclei of developing spermatids. This protein displays a peculiar primary structure. It contains 22.6 mol% cysteine residues (19 cysteines in 84 residues). This makes it the most cysteine-rich protamine known. The proportion of basic residues is relatively low (arginine 36.9 mol%, lysine 19.0 mol%). The protamine of E. cirrhosa condenses spermiogenic chromatin in a pattern which comprises fibres with a progressively larger diameter and lamellae that finally undergo definitive coalescence. We have also performed a study that estimates the number of interprotamine disulphide bonds formed during the process of spermiogenic chromatin condensation by means of sequential disappearance of MMNA (monomaleimido-nanogold) labelling. During the first step of spermiogenesis, protamines are found spread over very slightly condensed chromatin with their cysteines in a reactive state (protamine-cys-SH). From this stage the interprotamine disulphide bonds are established in a progressive way. First they are formed inside the chromatin fibres. Subsequently, they participate in the mechanism of fibre coalescence and finally, in the last step of spermiogenesis, the remaining free reactive -SH groups of cysteine form disulphide bonds, thus promoting a definitive stabilization of the nucleoprotein complex in the ripe sperm nucleus.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号