Ionic regulation of the cardiac sodium-calcium exchanger |
| |
Authors: | Reeves John P Condrescu Madalina |
| |
Affiliation: | University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Department of Pharmacology and Physiology, Newark, New Jersey 07103, USA. reeves@umdnj.edu |
| |
Abstract: | The Na(+)-Ca(2+) exchanger (NCX) links transmembrane movements of Ca(2+) ions to the reciprocal movement of Na(+) ions. It normally functions primarily as a Ca(2+) efflux mechanism in excitable tissues such as the heart, but it can also mediate Ca(2+) influx under certain conditions. Na(+) and Ca(2+) ions exert complex regulatory effects on NCX activity. Ca(2+) binds to two regulatory sites in the exchanger's central hydrophilic domain, and this interaction is normally essential for activation of exchange activity. High cytosolic Na(+) concentrations, however, can induce a constitutive activity that by-passes the need for allosteric Ca(2+) activation. Constitutive NCX activity can also be induced by high levels of phopshotidylinositol-4,5-bisphosphate (PIP?) and by mutations affecting the regulatory calcium binding domains. In addition to promoting constitutive activity, high cytosolic Na(+) concentrations also induce an inactivated state of the exchanger (Na(+)-dependent inactivation) that becomes dominant when cytosolic pH and PIP? levels fall. Na(+)-dependent inactivation may provide a means of protecting cells from Ca(2+) overload due to NCX-mediated Ca(2+) influx during ischemia. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|