首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of Choline Depletion on the Circadian Rhythm in Neurospora crassa
Authors:Patricia L. Lakin-Thomas
Abstract:One approach to identifying components of the circadian oscillator is to screen for clock defects in mutants with known biochemical lesions. The chol-1 mutant of Neurospora crassa is defective in the first methylation step of phosphatidylcholine synthesis, the conversion of phosphatidylethanolamine to phosphatidylmonomethylethanolamine, and requires choline for normal growth. Choline depletion of this mutant inhibits growth and lengthens the period of the rhythm of conidiation. On high levels of choline (above 20 µM), the growth rate and the period of the rhythm are normal. Below about 10 µM choline, the growth rate and period length depend on the choline concentration, and the period is about 58 h on minimal medium without choline. Choline depletion decreases period stability, and replicate cultures do not remain in phase due to variability in period within each culture. At intermediate levels of choline (around 10 µM) cultures are often arrhythmic. The choline requirement for growth can be met by the phosphatidylcholine precursors monomethylethanolamine and dimethylethanolamine, and these supplements also restore a normal period. Choline depletion of the chol-1 strain exaggerates the rhythm in growth rate previously reported in a chol + strain. Growth rate during formation of a conidial band (measured as forward advance of the mycelial front) is less than half of the maximum rate during non-conidiating interband formation. Choline-depleted cultures can be entrained to light/dark (LD) cycles with periods near to their free-running periods. Cultures on 10 µM choline (with a free-running period of about 25 h) can be entrained to a 24 h (12:12) LD cycle, but not to a 36 h (18:18) or 48 h (24:24) LD cycle. Cultures on 0.5 µM choline (free-running period of about 52 h) or minimal medium (free-running period of about 58 h) can be entrained to 18:18 and 24:24 LD cycles, but not a 12:12 cycle. The phase relationship of the conidiation rhythm to the zeitgeber for low-choline cultures in LD 24:24 is similar to high choline cultures in LD 12:12. Continuous light abolishes rhythmicity in choline-depleted cultures. These results may indicate a role for membrane phospholipids, and the metabolites of phosphatidylcholine in particular, in the control of the period of the circadian oscillator in Neurospora .
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号