首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of intracellular sugar phosphate concentrations in Saccharomyces cerevisiae using 31P nuclear magnetic resonance spectroscopy
Authors:Shanks J V  Bailey J E
Affiliation:Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125.
Abstract:A systematic procedure has been formulated for estimating the relative intracellular concentrations of sugar phosphates in Saccharomyces cerevisiae based upon (31)P nuclear magnetic resonance (NMR) measurements. The sugar phosphate region of the (31)P NMR spectrum is first decomposed by computer analysis, and the decomposition consistency and identification of individual sugar phosphate resonances are established based on in vitro chemical shift calibrations determined in separate experiments. Numerous evaluations of intracellular S. cerevisiae compositions for different strains and different cell environments provide the basis for in vivocorrelations of inorganic phosphate chemical shift with the chemical shifts of 3-phosphoglycerate, beta;-fructose 1,6-diphosphate, fructose 6-phosphate, and glucose 6 phosphate. Relative intracellular sugar phosphate concentrations are obtained by correcting peak areas for partial saturation during transient in vivo experiments. In vivo concentrations estimated by this method agree well with estimates for similar systems based on other techniques. This approach does not require costly la belled compounds, and has the advantage that other important metabolic state variables such-as internal and external pH and intracellular levels of phosphate, ATP, ADP, NAD(H), and polyphosphate may be determined from the same (31)P spectrum. Extension of this strategy to other cellular systems should be straightforward.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号