Correlation between mutational destabilization of phage T4 lysozyme and increased unfolding rates |
| |
Authors: | J D Klemm J A Wozniak T Alber D P Goldenberg |
| |
Affiliation: | Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132. |
| |
Abstract: | The thermodynamics and kinetics of unfolding of 28 bacteriophage T4 lysozyme variants were compared by using urea gradient gel electrophoresis. The mutations studied cause a variety of sequence changes at different residues throughout the polypeptide chain and result in a wide range of thermodynamic stabilities. A striking relationship was observed between the thermodynamic and kinetic effects of the amino acid replacements: All the substitutions that destabilized the native protein by 2 kcal/mol or more also increased the rate of unfolding. The observed increases in unfolding rate corresponded to a decrease in the activation energy of unfolding (delta Gu) at least 35% as large as the decrease in thermodynamic stability (delta Gu). Thus, the destabilizing lesions bring the free energy of the native state closer to that of both the unfolded state and the transition state for folding and unfolding. Since a large fraction of the mutational destabilization is expressed between the transition state and the native conformation, the changes in folding energetics cannot be accounted for by effects on the unfolded state alone. The results also suggest that interactions throughout much of the folded structure are altered in the formation of the transition state during unfolding. |
| |
Keywords: | |
|
|