首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Single-molecule measurement of the stiffness of the rigor myosin head
Authors:Lewalle Alexandre  Steffen Walter  Stevenson Olivia  Ouyang Zhenqian  Sleep John
Institution:* Randall Division, King's College London, London, United Kingdom
Medical School Hannover, Hanover, Germany
Abstract:The force-extension curve of single myosin subfragment-1 molecules, interacting in the rigor state with an actin filament, has been investigated at low ATP] by applying a slow triangle-wave movement to the optical traps holding a bead-actin-bead dumbbell. In combination with a measurement of the overall stiffness of the dumbbell, this allowed characterization of the three extensible elements, the actin-bead links and the myosin. Simultaneously, another method, based on an analysis of bead position covariance, gave satisfactory agreement. The mean covariance-based estimate for the myosin stiffness was 1.79 pN/nm (SD = 0.7 pN/nm; SE = 0.06 pN/nm (n = 166 myosin molecules)), consistent with a recent report (1.7 pN/nm) from rabbit muscle fibers. In the triangle-wave protocol, the motion of the trapped beads during interactions was linear within experimental error over the physiological range of force applied to myosin (±10 pN), consistent with a Hookean model; any nonlinear terms could not be characterized. Bound states subjected to forces that resisted the working stroke (i.e., positive forces) detached at a significantly lower force than when subjected to negative forces, which is indicative of a strain-dependent dissociation rate.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号