首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The hypoxia-induced microRNA-130a controls pulmonary smooth muscle cell proliferation by directly targeting CDKN1A
Institution:1. State Key Laboratory of Genetic Engineering, Fudan-VARI Genetic Epidemiology Center and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences and Institutes for Biomedical Sciences, Fudan University, Shanghai, China;2. Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
Abstract:Excessive proliferation of human pulmonary artery smooth muscle cells (HPASMC) is one of the major factors that trigger vascular remodeling in hypoxia-induced pulmonary hypertension. Several studies have implicated that hypoxia inhibits the tumor suppressor p21 (CDKN1A). However, the precise mechanism is unknown.The mouse model of hypoxia-induced PH and in vitro experiments were used to assess the impact of microRNAs (miRNAs) on the expression of CDKN1A. In these experiments, the miRNA family miR-130 was identified to regulate the expression of CDKN1A. Transfection of HPASMC with miR-130 decreased the expression of CDKN1A and, in turn, significantly increased smooth muscle proliferation. Conversely, inhibition of miR-130 by anti-miRs and seed blockers increased the expression of CDKN1A. Reporter gene analysis proved a direct miR-130–CDKN1A target interaction. Exposure of HPASMC to hypoxia was found to induce the expression of miR-130 with concomitant decrease of CDKN1A. These findings were confirmed in the mouse model of hypoxia-induced pulmonary hypertension showing that the use of seed blockers against miR-130 restored the expression of CDKN1A.These data suggest that miRNA family miR-130 plays an important role in the repression of CDKN1A by hypoxia. miR-130 enhances hypoxia-induced smooth muscle proliferation and might be involved in the development of right ventricular hypertrophy and vascular remodeling in pulmonary hypertension.
Keywords:Pulmonary hypertension  MicroRNA  Hypoxia  Proliferation  Vascular remodeling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号