首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Temporal instability of isotopes–climate statistical relationships – A study of black spruce trees in northeastern Canada
Institution:1. INRS — Centre Eau Terre Environnement 490, rue de la Couronne, Québec G1K 9A9, Québec, Canada;2. Pétrolia Inc., 305 boulevard Charest Est, 10 etage, Québec G1K 3H3, Québec, Canada;1. Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement (INRS-ETE), 490 de la Couronne, Quebec City, QC, Canada, G1K 9A9;2. Université Laval, Département de Géographie, Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi-Price, 2405, rue de la Terrasse, Local 3137, Quebec City, QC, Canada, G1V 0A6;3. Defence Research and Development Canada – Valcartier, 2459 Pie-XI Blvd. North, Quebec City, QC, Canada, G3J 1X5
Abstract:Climate reconstructions using stable isotopes (δ18O and δ13C values) in tree rings are based on relationships between present climatic conditions and isotopic series. This widely used approach relies on the assumption that correlations between stable isotopes and climatic conditions are steady over time. In this paper, we evaluate the strength of the correlations between δ18O and δ13C series with several climatic parameters on fourteen black spruce trees coming from three different sites, in northeastern Canada. We applied a 21-year moving window on the r Pearson calculated between stable isotopes and March–May and June–August precipitation, June–August and April–June maximal temperatures. Our results indicate that despite the large distance and differences in stand conditions between the sites, the three sites responded in the same way over time. We show that because the climatic ambiance has changed during the 1980–1990 period due to a positive North Atlantic Oscillation index the δ13C values are not controlled anymore by spring precipitation or summer maximal temperature in the following two decades. As opposed to δ13C series, the relationship between summer maximal temperature and δ18O values was stable over time, and decreased only in the last decade. All these results attest of a “divergence problem” in the last decades which is most pronounced for δ13C series. We conclude that the spruce δ18O series appears to be the most appropriate indicator for reconstructing June–August maximal temperature in the studied area despite the divergence issue, given that the calibration–validation tests and reconstruction can exclude the divergent last decade.
Keywords:Divergence  Carbon isotopes  Oxygen isotopes  Tree rings
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号