首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Exemestane metabolites suppress growth of estrogen receptor-positive breast cancer cells by inducing apoptosis and autophagy: A comparative study with Exemestane
Institution:1. Department of Pathology, Rochester General Hospital, University of Rochester School of Medicine, Rochester, 14621, NY;2. Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, 07103, NY
Abstract:Around 60–80% of all breast tumors are estrogen receptor-positive. One of the several therapeutic approaches used for this type of cancers is the use of aromatase inhibitors. Exemestane is a third-generation steroidal aromatase inhibitor that undergoes a complex and extensive metabolism, being catalytically converted into chemically active metabolites. Recently, our group showed that the major exemestane metabolites, 17β-hydroxy-6-methylenandrosta-1,4-dien-3-one and 6-(hydroxymethyl)androsta-1,4,6-triene-3,17-dione, as well as, the intermediary metabolite 6β-Spirooxiranandrosta-1,4-diene-3,17-dione, are potent aromatase inhibitors in breast cancer cells. In this work, in order to better understand the biological mechanisms of exemestane in breast cancer and the effectiveness of its metabolites, it was investigated their effects in sensitive and acquired-resistant estrogen receptor-positive breast cancer cells. Our results indicate that metabolites induced, in sensitive breast cancer cells, cell cycle arrest and apoptosis via mitochondrial pathway, involving caspase-8 activation. Moreover, metabolites also induced autophagy as a promoter mechanism of apoptosis. In addition, it was demonstrated that metabolites can sensitize aromatase inhibitors-resistant cancer cells, by inducing apoptosis. Therefore, this study indicates that exemestane after metabolization originates active metabolites that suppress the growth of sensitive and resistant breast cancer cells. It was also concluded that, in both cell lines, the biological effects of metabolites are different from the ones of exemestane, which suggests that exemestane efficacy in breast cancer treatment may also be dependent on its metabolites.
Keywords:Estrogen receptor-positive breast cancer  Aromatase inhibitors  Exemestane metabolites  Apoptosis  Autophagy  Acquired-resistance  AIs"}  {"#name":"keyword"  "$":{"id":"kw0040"}  "$$":[{"#name":"text"  "_":"aromatase inhibitors  AO"}  {"#name":"keyword"  "$":{"id":"kw0050"}  "$$":[{"#name":"text"  "_":"acridine orange  AVOs"}  {"#name":"keyword"  "$":{"id":"kw0060"}  "$$":[{"#name":"text"  "_":"acid vesicular organelles  CCCP"}  {"#name":"keyword"  "$":{"id":"kw0070"}  "$$":[{"#name":"text"  "_":"carbonyl cyanide m-chlorophenylhydrazone  CFBS"}  {"#name":"keyword"  "$":{"id":"kw0080"}  "$$":[{"#name":"text"  "_":"pre-treated charcoal heat-inactivated fetal bovine serum  CYP"}  {"#name":"keyword"  "$":{"id":"kw0090"}  "$$":[{"#name":"text"  "_":"cytochrome P450 enzymes  DCFH2-DA"}  {"#name":"keyword"  "$":{"id":"kw0100"}  "$$":[{"#name":"text"  "_":"2′  7′-dichlorodihydrofluorescein diacetate  DiOC6(3)"}  {"#name":"keyword"  "$":{"id":"kw0110"}  "$$":[{"#name":"text"  "_":"3  3′-dihexyloxacarbocyanine iodide  DMEM"}  {"#name":"keyword"  "$":{"id":"kw0120"}  "$$":[{"#name":"text"  "_":"Dulbecco's Modified Eagle's Medium  ER"}  {"#name":"keyword"  "$":{"id":"kw0130"}  "$$":[{"#name":"text"  "_":"estrogen receptor  estrogen receptor-positive  exemestane  FBS"}  {"#name":"keyword"  "$":{"id":"kw0160"}  "$$":[{"#name":"text"  "_":"fetal bovine serum  HFF-1"}  {"#name":"keyword"  "$":{"id":"kw0170"}  "$$":[{"#name":"text"  "_":"human foreskin fibroblast cell line  LTEDaro"}  {"#name":"keyword"  "$":{"id":"kw0180"}  "$$":[{"#name":"text"  "$$":[{"#name":"__text__"  "_":"resistant long-term estrogen deprived ER"}  {"#name":"sup"  "$":{"loc":"post"}  "_":"+"}  {"#name":"__text__"  "_":" human breast cancer cell line  MCF-7aro cells"}  {"#name":"keyword"  "$":{"id":"kw0190"}  "$$":[{"#name":"text"  "$$":[{"#name":"__text__"  "_":"ER"}  {"#name":"sup"  "$":{"loc":"post"}  "_":"+"}  {"#name":"__text__"  "_":" aromatase-overexpressing breast cancer cell line  MEM"}  {"#name":"keyword"  "$":{"id":"kw0200"}  "$$":[{"#name":"text"  "_":"Eagles's minimum essential medium  MFI"}  {"#name":"keyword"  "$":{"id":"kw0210"}  "$$":[{"#name":"text"  "_":"mean fluorescence intensity  MTT"}  {"#name":"keyword"  "$":{"id":"kw0220"}  "$$":[{"#name":"text"  "_":"tetrazolium salt 3-(4  5-dimethylthiazol-2-yl)-2  5-diphenyltetrazolium  PI"}  {"#name":"keyword"  "$":{"id":"kw0230"}  "$$":[{"#name":"text"  "_":"propidium iodide  PI3K"}  {"#name":"keyword"  "$":{"id":"kw0240"}  "$$":[{"#name":"text"  "_":"phosphatidylinositol 3-kinases  PMA"}  {"#name":"keyword"  "$":{"id":"kw0250"}  "$$":[{"#name":"text"  "_":"phorbol 12-myristate 13-acetate  PS"}  {"#name":"keyword"  "$":{"id":"kw0260"}  "$$":[{"#name":"text"  "_":"phosphatidylserine  RLU"}  {"#name":"keyword"  "$":{"id":"kw0270"}  "$$":[{"#name":"text"  "_":"relative luminescence units  ROS"}  {"#name":"keyword"  "$":{"id":"kw0280"}  "$$":[{"#name":"text"  "_":"intracellular reactive oxygen species  STS"}  {"#name":"keyword"  "$":{"id":"kw0290"}  "$$":[{"#name":"text"  "_":"staurosporine  T"}  {"#name":"keyword"  "$":{"id":"kw0300"}  "$$":[{"#name":"text"  "_":"testosterone  6β-spirooxiranandrosta-1  4-diene-3  17-dione  3-MA"}  {"#name":"keyword"  "$":{"id":"kw0320"}  "$$":[{"#name":"text"  "_":"3-methyladenine  6-(hydroxymethyl)androsta-1  4  6-triene-3  17-dione  7-AAD"}  {"#name":"keyword"  "$":{"id":"kw0340"}  "$$":[{"#name":"text"  "_":"7-amino-actinomycin D  17β-hydroxy-6-methylenandrosta-1  4-dien-3-one  mitochondrial transmembrane potential
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号