首页 | 本学科首页   官方微博 | 高级检索  
     


DNA unwinding by Escherichia coli DNA helicase I (TraI) provides evidence for a processive monomeric molecular motor
Authors:Sikora Bartek  Eoff Robert L  Matson Steven W  Raney Kevin D
Affiliation:Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
Abstract:The F plasmid TraI protein (DNA helicase I) plays an essential role in conjugative DNA transfer as both a transesterase and a helicase. Previous work has shown that the 192-kDa TraI protein is a highly processive helicase, catalytically separating >850 bp under steady-state conditions. In this report, we examine the kinetic mechanism describing DNA unwinding of TraI. The kinetic step size of TraI was measured under both single turnover and pre-steady-state conditions. The resulting kinetic step-size estimate was approximately 6-8 bp step(-1). TraI can separate double-stranded DNA at a rate of approximately 1100 bp s(-1), similar to the measured unwinding rate of the RecBCD helicase, and appears to dissociate very slowly from the 3' terminus following translocation and strand-separation events. Analyses of pre-steady-state burst amplitudes indicate that TraI can function as a monomer, similar to the bacteriophage T4 helicase, Dda. However, unlike Dda, TraI is a highly processive monomeric helicase, making it unique among the DNA helicases characterized thus far.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号