首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of enzymatic degradation on the frictional response of articular cartilage in stress relaxation
Authors:Basalo Ines M  Raj David  Krishnan Ramaswamy  Chen Faye H  Hung Clark T  Ateshian Gerard A
Institution:Department of Mechanical Engineering, Columbia University, SW Mudd, Mail Code 4703, 500 West 120th Street, New York, NY 10027, USA.
Abstract:It was recently shown experimentally that the friction coefficient of articular cartilage correlates with the interstitial fluid pressurization, supporting the hypothesis that interstitial water pressurization plays a fundamental role in the frictional response by supporting most of the load during the early time response. A recent study showed that enzymatic treatment with chondroitinase ABC causes a decrease in the maximum fluid load support of bovine articular cartilage in unconfined compression. The hypothesis of this study is that treatment with chondroitinase ABC will increase the friction coefficient of articular cartilage in stress relaxation. Articular cartilage samples (n = 34) harvested from the femoral condyles of five bovine knee joints (1-3 months old) were tested in unconfined compression with simultaneous continuous sliding (+/-1.5 mm at 1 mm/s) under stress relaxation. Results showed a significantly higher minimum friction coefficient in specimens treated with 0.1 micro/ml of chondroitinase ABC for 24 h (micro(min) = 0.082+/-0.024) compared to control specimens (micro(min) = 0.047+/-0.014). Treated samples also exhibited higher equilibrium friction coefficient (micro(eq) = 0.232+/-0.049) than control samples (micro(eq) = 0.184+/-0.036), which suggest that the frictional response is greatly influenced by the degree of tissue degradation. The fluid load support was predicted from theory, and the maximum value (as a percentage of the total applied load) was lower in treated specimens (77+/-12%) than in control specimens (85+/-6%). Based on earlier findings, the increase in the ratio micro(min)/micro(eq) may be attributed to the decrease in fluid load support.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号