首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The effect of Ca2+ and calmodulin on the inhibition of Ca2(+)+Mg2(+)-ATPase in erythrocyte ghost membranes by nonpolar and polar carbodiimides
Authors:K S Famulski  S Pikula  A Wrzosek  A B Wojtczak
Institution:Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland.
Abstract:N,N'-dicyclohexylcarbodiimide (DCCD) and 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide (CMCD) inhibited calmodulin-dependent Ca2(+)+Mg2(+)-ATPase activity in erythrocyte ghost membranes. The extent of the inhibition caused by carbodiimides strongly depended on their hydrophobicity. Hydrophobic DCCD was a more potent inhibitor then hydrophilic CMCD. Calmodulin (CaM) protected the enzyme against the former carbodiimide, whereas Ca2+ did the same against the latter. In contrast to previous observations made by Villalobo et al., on the purified enzyme, neither carbodiimide affected the calmodulin-independent ATPase activity in ghost membranes. Inhibition of the calmodulin-dependent ATPase activity was due to a decrease of the maximum activity, whereas the Km value for Ca2+ remained unchanged. Titration of erythrocyte ghost membranes with CaM revealed a biphasic response of ATPase to this activator. Two affinity constants were found for CaM, 0.64 nM and 14 nM. DCCD affected the interaction with CaM at high- and low-affinity binding sites in a competitive manner. CMCD acted as a noncompetitive inhibitor for CaM low-affinity sites, whereas it behaved in a competitive way against CaM interaction with high-affinity sites. In E2 form (stabilized by vanadate and EGTA) ATPase was more sensitive to carbodiimides than in E1 form (induced by La3+).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号