首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Asynchronous flowering and within-plant flowering diversity in wheat and the implications for crop resilience to heat
Authors:Lukac Martin  Gooding Michael J  Griffiths Simon  Jones Hannah E
Institution:Department of Agriculture, Development and Policy, University of Reading, UK. m.lukac@reading.ac.uk
Abstract:

Background and Aims

Self-pollination dominates in wheat, with a small level of out-crossing due to flowering asynchrony and male sterility. However, the timing and synchrony of male and female flowering in wheat is a crucial determinant of seed set and may be an important factor affecting gene flow and resilience to climate change. Here, a methodology is presented for assessing the timing and synchrony of flowering in wheat, Triticum aestivum.

Methods

From the onset of flowering until the end of anthesis, the anther and stigma activity of each floret was assessed on the first five developing ears in potted plants grown under ambient conditions and originating from ‘Paragon’ or ‘Spark-Rialto’ backgrounds. At harvest maturity, seed presence, size and weight was recorded for each floret scored.

Key Results and Conclusions

The synchrony between pollen dehiscence and stigma collapse within a flower was dependent on its relative position in a spike and within a floret. Determined on the basis of synchrony within each flower, the level of pollination by pollen originating from other flowers reached approx. 30 % and did not change throughout the duration of flowering. A modelling exercise parameterized by flowering observations indicated that the temporal and spatial variability of anther activity within and between spikes may influence the relative resilience of wheat to sudden, extreme climatic events which has direct relevance to predicted future climate scenarios in the UK.
Keywords:Wheat  Triticum aestivum  flowering synchrony  pollination  climate change  heat resistance
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号