首页 | 本学科首页   官方微博 | 高级检索  
     


Anaerobic degradation of chlorophenol by an enrichment culture
Authors:G. Dietrich  J. Winter
Affiliation:(1) Institut für Mikrobiologie, Universität Regensburg, Universitätsstrasse 31, D-8400 Resensburg, Federal Republic of Germany
Abstract:Summary An anaerobic mixed culture from sewage sludge was enriched in a yeast extract and peptone-containing medium; it was able to degrade 2-cholorophenol completely to methane and CO2. Degradation rates of 2-chlorophenol of up to 0.18 g/l per day were observed in suspended cultures without biomass retention and of 0.375 g/l per day in cultures immobilized on Liapor clay beads. Attempts to isolate the dechlorinating organism failed. The mixed culture was reduced to three morphologically distinctive microorganisms using a medium with limited amounts of yeast extract and peptone and n-butyrate as a co-substrate. Under these conditions the phenol-degrading bacterium was lost and phenol accumulated in the medium. No growth and no dehalogenation of 2-chlorophenol was obtained when yeast extract and peptone were omitted completely. Besides serving as a source of supplementary components, yeast extract and peptone were apparently required as the main source of carbon, wereas reducing equivalents for reductive dehalogenation were obtained by oxidation of n-butyrate. A spirochaete-like organism was presumably the dechlorinating bacterium. The mixed culture lost its dehalogenation capability if this organism was lost. n-Butyrate could be replaced by n-valerate, hexanoate, heptanoate, octanoate, pelargonic acid, n-decanoic acid or palmitate as co-substrates for dehalogenation of either 2-chlorophenol, 2-bromophenol or complete dechlorination of 2,6-dichlorophenol, whereas from 2,4-dichlorophenol only the substituent in the ortho-position could be eliminated.Dedicated to Professor O. Kandler on the occassion of his 70th birthdayOffprint requests to: J. Winter
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号