首页 | 本学科首页   官方微博 | 高级检索  
     


Selective escape from CD8+ T-cell responses represents a major driving force of human immunodeficiency virus type 1 (HIV-1) sequence diversity and reveals constraints on HIV-1 evolution
Authors:Allen Todd M  Altfeld Marcus  Geer Shaun C  Kalife Elizabeth T  Moore Corey  O'sullivan Kristin M  Desouza Ivna  Feeney Margaret E  Eldridge Robert L  Maier Erica L  Kaufmann Daniel E  Lahaie Matthew P  Reyor Laura  Tanzi Giancarlo  Johnston Mary N  Brander Christian  Draenert Rika  Rockstroh Jurgen K  Jessen Heiko  Rosenberg Eric S  Mallal Simon A  Walker Bruce D
Affiliation:Howard Hughes Medical Institute, Partners AIDS Research Center, and Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
Abstract:The sequence diversity of human immunodeficiency virus type 1 (HIV-1) represents a major obstacle to the development of an effective vaccine, yet the forces impacting the evolution of this pathogen remain unclear. To address this issue we assessed the relationship between genome-wide viral evolution and adaptive CD8+ T-cell responses in four clade B virus-infected patients studied longitudinally for as long as 5 years after acute infection. Of the 98 amino acid mutations identified in nonenvelope antigens, 53% were associated with detectable CD8+ T-cell responses, indicative of positive selective immune pressures. An additional 18% of amino acid mutations represented substitutions toward common clade B consensus sequence residues, nine of which were strongly associated with HLA class I alleles not expressed by the subjects and thus indicative of reversions of transmitted CD8 escape mutations. Thus, nearly two-thirds of all mutations were attributable to CD8+ T-cell selective pressures. A closer examination of CD8 escape mutations in additional persons with chronic disease indicated that not only did immune pressures frequently result in selection of identical amino acid substitutions in mutating epitopes, but mutating residues also correlated with highly polymorphic sites in both clade B and C viruses. These data indicate a dominant role for cellular immune selective pressures in driving both individual and global HIV-1 evolution. The stereotypic nature of acquired mutations provides support for biochemical constraints limiting HIV-1 evolution and for the impact of CD8 escape mutations on viral fitness.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号