首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Chromosome-level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps
Authors:Walling Jason G  Shoemaker Randy  Young Nevin  Mudge Joann  Jackson Scott
Institution:Department of Agronomy, Purdue University, West Lafayette, Indiana 47906, USA.
Abstract:Soybean has 20 chromosome pairs that are derived from at least two rounds of genomewide duplication or polyploidy events although, cytogenetically, soybean behaves like a diploid and has disomic inheritance for most loci. Genetically anchored genomic clones were used as probes for fluorescence in situ hybridization (FISH) to determine the level of postpolyploid chromosomal rearrangements and to integrate the genetic and physical maps to (1) assign linkage groups to specific chromosomes, (2) assess chromosomal structure, and (3) determine the distribution of recombination along the length of a chromosome. FISH mapping of seven putatively gene-rich BACs from linkage group L (chromosome 19) revealed that most of the genetic map correlates to the highly euchromatic long arm and that there is extensive homeology with another chromosome pair, although colinearity of some loci does appear to be disrupted. Moreover, mapping of BACs containing high-copy sequences revealed sequestration of high-copy repeats to the pericentromeric regions of this chromosome. Taken together, these data present a model of chromosome structure in a highly duplicated but diploidized eukaryote, soybean.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号