首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Expression of a cyanobacterial sucrose-phosphate synthase from Synechocystis sp. PCC 6803 in transgenic plants
Authors:Lunn John E  Gillespie Vanessa J  Furbank Robert T
Institution:CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.
Abstract:Sucrose-phosphate synthase (SPS) from the cyanobacterium Synechocystis sp. PCC 6803 lacks all of the Ser residues known to be involved in the regulation of higher plant SPS by protein phosphorylation. The Synechocystis SPS is also not allosterically regulated by glucose 6-phosphate or orthophosphate. To investigate the effects of expressing a potentially unregulated SPS in plants, the Synechocystis sps gene was introduced into tobacco, rice and tomato under the control of constitutive promoters. The Synechocystis SPS protein was expressed at a high level in the plants, which should have been sufficient to increase overall SPS activity 2-8-fold in the leaves. However, SPS activities and carbon partitioning in leaves from transgenic and wild-type plants were not significantly different. The maximal light-saturated rates of photosynthesis in leaves from tomato plants expressing the Synechocystis SPS were the same as those from wild-type plants. Tomato plants expressing the maize SPS showed 2-3-fold increases in SPS activity, increased partitioning of photoassimilate to sucrose and up to 58% higher maximal rates of photosynthesis. To investigate the apparent inactivity of the Synechocystis SPS the enzyme was purified from transgenic tobacco and rice plants. Surprisingly, the purified enzyme was found to have full catalytic activity. It is proposed that some other protein in plant cells binds to the Synechocystis SPS resulting in inhibition of the enzyme.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号