首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Single turnover EPR studies of benzoyl-CoA reductase.
Authors:M Boll  G Fuchs  D J Lowe
Institution:Institut für Biologie II, Universitat Freiburg, Sch?nzlestrasse 1, D-79104 Freiburg, Germany. boll@uni-freiburg.de
Abstract:Benzoyl-CoA reductase (BCR) catalyzes the ATP-driven transport of two electrons from a reduced 24Fe-4S] ferredoxin to the aromatic ring of benzoyl-CoA. A mechanism involving radical species and very low potential electrons similar to the Birch reduction of aromatics has been suggested for this reaction. The redox centers of BCR have previously been identified, by EPR- and M?ssbauer spectroscopy, to be three cysteine-ligated 4Fe-4S] clusters Boll et al. (2000) J. Biol. Chem. 275, 31857-31868] with redox potentials more negative than -500 mV. In this work, the catalytic cycle of BCR was studied by freeze-quench experiments; the dithionite reduced enzyme was rapidly mixed with equimolar amounts of benzoyl-CoA and excess MgATP plus dithionite, and subjected to EPR spectroscopic analysis. The turnover period of the enzyme under the conditions used was 3 s. The total S = (1)/(2) spin concentration increased 3-fold very rapidly (within approximately 25 ms). In the course of a single turnover the extent of enzyme reduction decreased again, finally reaching the starting value. An increased magnetic interaction of 4Fe-4S] clusters and the rise of an S = (7)/(2) high-spin EPR signal occurred as second simultaneous and transient events (at approximately 200 ms). Previous work showed that binding of the nucleotide affects the magnetic interaction of 4Fe-4S] clusters, whereas hydrolysis of MgATP is required for the switch to high-spin EPR signals. Finally, two novel transient EPR signals with an isotropic line-shape developed maximally in the late phase of the catalytic cycle ( approximately 1-2 s). These signals differed from those of typical free radicals by shifted g values at g = 2.015 and g = 2.033 and by an unusually fast relaxation rate, suggesting an interaction of these paramagnetic species with 4Fe-4S](+1) clusters. On the basis of these results, we present a proposal for a catalytic cycle involving radical species.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号