Cancer therapy using a self-replicating RNA vaccine. |
| |
Authors: | H Ying T Z Zaks R F Wang K R Irvine U S Kammula F M Marincola W W Leitner N P Restifo |
| |
Affiliation: | Surgery Branch, National Cancer Institute, Bethesda, Maryland 20892-1502, USA. |
| |
Abstract: | 'Naked' nucleic acid vaccines are potentially useful candidates for the treatment of patients with cancer, but their clinical efficacy has yet to be demonstrated. We sought to enhance the immunogenicity of a nucleic acid vaccine by making it 'self-replicating'. We accomplished this by using a gene encoding an RNA replicase polyprotein derived from the Semliki forest virus, in combination with a model antigen. A single intramuscular injection of a self-replicating RNA immunogen elicited antigen-specific antibody and CD8+ T-cell responses at doses as low as 0.1 microg. Pre-immunization with a self-replicating RNA vector protected mice from tumor challenge, and therapeutic immunization prolonged the survival of mice with established tumors. The self-replicating RNA vectors did not mediate the production of substantially more model antigen than a conventional DNA vaccine did in vitro. However, the enhanced efficacy in vivo correlated with a caspase-dependent apoptotic death in transfected cells. This death facilitated the uptake of apoptotic cells by dendritic cells, providing a potential mechanism for enhanced immunogenicity. Naked, non-infectious, self-replicating RNA may be an excellent candidate for the development of new cancer vaccines. |
| |
Keywords: | |
|
|